Course Details
Subject {L-T-P / C} : CS3092 : Quantum Machine Learning { 3-0-0 / 3}
Subject Nature : Theory
Coordinator : Shyamapada Mukherjee
Syllabus
Module 1 : |
Module I
|
Course Objective
1 . |
Understand the fundamental principles of quantum computing and its advantages over classical computing. |
2 . |
Explore the theoretical and practical aspects of quantum machine learning algorithms. |
3 . |
Develop the ability to implement quantum neural networks and variational quantum circuits. |
4 . |
Apply quantum techniques to real-world problems in image and signal processing. |
Course Outcome
1 . |
(I) Demonstrate a solid understanding of quantum mechanics and quantum computing principles.
|
Essential Reading
1 . |
Nielsen, M. A., & Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press |
2 . |
Schuld, M., & Petruccione, F., Supervised Learning with Quantum Computers, Springer |
Supplementary Reading
1 . |
Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe & Seth Lloyd, Quantum Machine Learning, Nature |
2 . |
Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini and Leonard Wossnig, Quantum Machine Learning: A Classical Perspective, Royal Society |