Instruction Enhancement Program On Design Verification and Hardware Security <u>NIT Rourkela</u>

(1st July 2019 to 5th July 2019)

Objectives: -

- This Instruction Enhancement Program (IEP) provides: -
 - A hands-on introduction to the Digital design verification and System Verilog language to verify a device under test with object-oriented methodologies targeting coverage-driven constrained-random test environments.
 - System Verilog Assertion language and its use in creating reusable, scalable assertions and assess the effectiveness of your verification programme.
 - Formal verification and to learn how to write effective assertions to find and fix bugs
 - Introduction to a Hardware Security and its different dimensions.

Syllabus: -

- System Verilog Design Verification-I: The concept of Device under test (DUT), Complexity of verification, lexical elements of system Verilog (SV), Layered testbench and SV verification environment.
- System Verilog Design Verification-II: Basics of SV testbench, concurrency in system Verilog, object oriented programming, encapsulation and randomization.
- System Verilog Design Verification –III: Inter-thread communications, mailbox, code coverage, functional coverage and building efficient SV testbenches. System Verilog UVM.
- Formal Verification (FV): -Importance of FV, Challenges in implementing FV, Boolean Algebra, Boolean satisfiability, Basic assertion concepts, immediate assertions, concurrent assertions, Sequences, clocks, resets and coverage.
- Hardware Security: Reasons for raise of hardware security issues, IC Counterfeiting, IP piracy, Hardware Trojans, Debug security and applications of Physical Unclonable Functions (PUF).

References: -

- 1. SystemVerilog for Verification: A Guide to Learning the Testbench Language Features by Chris Spear, Greg Tumbush, Springer; 3rd ed. 2012 edition.
- 2. SystemVerilog Assertions and Functional Coverage: Guide to Language, Methodology and Applications, by Ashok B. Mehta, Springer; 2014 edition.
- 3. Formal Verification: An Essential Toolkit for Modern VLSI Design 1st Edition by Erik Seligman, Tom Schubert, M V Achutha Kiran Kumar, Morgan Kaufmann; 2015.
- 4. Clifford E. Cummings, "SystemVerilog Assertions Bind files & Best Known Practices for Simple SVA Usage"
- 5. Wolfgang Ecker, VolkanEsen, Thomas Kruse, Thomas Steininger, Peter Jensen "SystemVerilog Assertions - Techniques, Tips, Tricks, and Traps"
- 6. Don Mills, Stuart Sutherland "SystemVerilog Assertions Are For Design Engineers Too!"
- 7. Getting Started with UVM: A Beginner's Guide 1st Edition, by Vanessa R. Cooper, Verilab Publishing, 2013

8. Introduction to Hardware Security and Trust Editors: Tehranipoor, Mohammad, Wang, Cliff (Eds.), Springer-Verlag New York, 2012.

S1.	Date and	Classroom Sessions			Lab Session
No	Day				
		9 AM to 10 AM	10AM to	11.15 AM to	1.30 PM to 4.30PM
			11AM	12.30 PM	
1	Monday	Inauguration	Advanced	Introduction to	Code Coverage and
	(01-07-19)		Digital	Verification and	Functional Coverage
			Design	System Verilog	
2	Tuesday	System Verilog	Encapsulatio	Mailbox, inter	System Verilog
	(02-07-19)	(SV) Testbench,	n and	thread	Testbench (3 to 4
		lexical elements of	Randomizati	communications	examples)
		SV	on		
3	Wednesday	System Verilog	Universal	Universal	System Verilog
	(03-07-19)	Testbench	Verification	Verification	Testbench and UVM
			Methodology	Methodology-II	Testbench
			-I		
4	Thursday	Introduction to	SV	SV assertions -II	Experiments on
	(04-07-19)	Formal Verification	assertions-I		formal verification
5	Friday	Formal Verification	Introduction and advancements in Hardware Security		Simulation of
	(05-07-19)				Hardware Trojan and
					Valedictory
					Ceremony

Date and Schedule: - (1st July 2019 to 5th July 2019)

Number of Participants: -

• We can accommodate 25 participants. (Cadence 10 licenses and Synopsys 5 licences),

Any Software/Hardware requirement from participant's side: -

• No .We will be hosting with our lab infrastructures (PCs and Tools given by SMDPC2SD).

Boarding and Lodging details: -NIT Guest House is available on these dates. We can accommodate the participants there. The budget details for boarding and lodging is included in the budget below.

Contact person: - Prof. A.K.Swain, Department of Electronics and Communication Engineering, NIT, Rourkela. Mob: - 9437341298, 8847807782, Email: - <u>swaina@nitrkl.ac.in</u>, <u>swain.ayas@gmail.com</u>.