National Institute of Technology Rourkela

Departmental Seminar

Seminar Title : Extremal problem for graphs with modular p-group symmetry

Speaker : Kirti Sahu

Supervisor : Prof. Ranjit Mehatari

Venue : Seminar Room (Department of Mathematics)

Date and Time : 23 Sep 2025 (11:00 am)

Abstract : For a finite group G, define $\alpha(G)$ as the minimum number of vertices among all graphs Γ such that Aut $\Gamma \sim G$. For any p

prime, all p-groups of order p n having cyclic subgroups of order p'n-1 have been completely classified. Several authors have already investigated some of these families of groups in order to find vertex-minimal graphs. Here we consider a family of groups called modular p-groups, for an odd prime p and $n \ge 3$. A modular p-group is defined as $Modn(p) = \Box a'(p^{n-1}) = 1$, b'p = 1, $b = a'((p^{n-2})+1)$ b. We compute the order of vertex-minimal graphs with Modn(p)-symmetry. The fixing number of a graph Γ is defined as the smallest number of vertices in $V(\Gamma)$ that, when fixed, makes Aut Γ trivial. This concept has been extended to finite groups by Gibbons and Laison. For a finite group G, the fixing set is defined as the set of all fixing numbers of graphs having automorphism groups isomorphic to G. We show that any graph Γ whose automorphism group is a modular p-group has the fixing number 1. As a result, the modular p-group's fixing set

becomes {1}. Keywords: Automorphism group, p-group, vertex-minimal graph, fixing number, fixing set