CURRICULUM VITAE

Dr. PRATEEK KHATRI

Assistant Professor Department of Chemical Engineering NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA, ODISHA Email: <u>khatrip@nitrkl.ac.in</u>, <u>prateek.singh42@gmail.com</u> Contact: +91-8249586465, +91-9891053775

EDUCATION

- Postdoctoral Associate, Department of Chemical and Biological Engineering, University at Buffalo, New York, US
- Early-doc fellow (Chemical Engineering), Indian Institute of Technology-Delhi, Hauz Khas, Delhi, India
- Ph.D. (Chemical Engineering), Indian Institute of Technology-Delhi, Hauz Khas, Delhi, India
- M. Tech. (Chemical Engineering), Indian Institute of Technology-Varanasi, Uttar Pradesh, India, 2014-2016 (CPI-8.24)
- B. Tech. (Chemical Engineering), Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India, 2009-2013 (CPI-8.030)
- 12th Higher Secondary Education (C.B.S.E.), K.V. Paschim Vihar, Delhi, India, 2008 (69.80%)
- 10th Secondary Education (C.B.S.E.), K.V. Paschim Vihar, Delhi, India, 2006 (85.60%)

PUBLICATIONS

- Khatri P., Bhatia D. Effect of gas composition on the NO_x adsorption and reduction activity of a dual-function Ag/MgO/γ-Al₂O₃ catalyst. Applied Catalysis A: General (2021) 618:118114. (IF: 5.706)
- Khatri P., Bhatia D. Performance and Mechanistic Aspects of Ag/MgO/γ-Al₂O₃ as a Passive NO_x Adsorber. Catalysis Letters (2021) 1-15. (IF: 3.186)
- Khatri P., Bhatia D. Effect of H₂, H₂O, and CO₂ on the deNO_x characteristics of a combined passive NO_x adsorber and NO_x reduction catalyst. AIChE Journal (Accepted, 2022; IF: 3.993).
- Liu CH, Porter S, Chen J, Pham H, Peterson EJ, **Khatri P.**, Toops TJ, Datye A, Kyriakidou EA. Enhanced low temperature performance of bimetallic Pd/Pt/SiO2 (core)@ Zr (shell) diesel oxidation catalysts. **Applied Catalysis B: Environmental** (2023) 15; 327:122436. (**IF: 24.43**)
- Khatri P., Bhatia D. Effect of Ag and MgO loadings on the NO_x adsorption-desorption and reduction characteristics of Ag/MgO/Al₂O₃. Chemical Engineering Research and Design (2023) accepted.

• Sehrawat R., Abdullah S., **Khatri P.**, Kumar L., Kumar A., Mujumdar A.S. Role of drying technology in probiotic encapsulation and impact on food safety. Drying Technology (Accepted, 2022; IF: 4.452)

CONFERENCES

- Khatri P., Bhatia D., 'Multifunctional Aftertreatment System for NO_x Adsorption and Reduction: Development and Mechanistic Insights' Catalysis and chemical engineering conference, California, Feb 22-26, 2021 (Oral Presentation).
- Khatri P., Bhatia D., 'A Novel non-PGM diesel exhaust catalyst for low-temperature NO_x adsorption and high-temperature NO_x reduction' ISCRE 26 & APCRE 9, 05-08 December, 2021 (Poster presentation)
- Khatri P., Bhatia D., 'Development of a Novel Passive NO_x adsorber for reduction of lowtemperature NO_x emissions' ISCRE 26 & APCRE 9, 05-08 December, 2021 (Poster presentation)

AWARDS AND ACADEMIC ACHIEVEMENTS

- Recipient of **DST INSPIRE FACULTY** research grant 2022 (Rs 7 lakh per year for a duration of five years).
- Secured **283 rank** in Graduate Aptitude Test in Engineering (**GATE-2016**) in Chemical Engineering. Qualified GATE exam three times as well.
- "Certificate of appreciation" for presenting on the topic "Multifunctional Aftertreatment System for NO_x Adsorption and Reduction: Development and Mechanistic Insights" under Oral presentation category in "Catalysis and chemical engineering conference, California" 22-26 Feb 2021.

Ph.D. THESIS WORK

Title: Dual-functional Ag/MgO/Al₂O₃ as a passive NO_x adsorber and NO_x reduction catalyst for lean-burn engines: Development and mechanistic insights

- Developed a unique dual-function Ag-based catalyst, which can work as a passive NO_x adsorber at low temperatures and a NO_x reduction catalyst at high temperatures.
- Developed a reactor setup to evaluate the catalyst performance under various reaction conditions.
- Performed various kinds of experiments such as steady-state, transient, temperature ramp, long-storage experiments, etc.
- Showed that the low-temperature NO_x adsorption activity of the developed material is similar to the much more expensive Pd-based materials.
- Investigated the role of various gas components including H_2 , NH_3 , C_3H_6 , H_2O , and CO_2 on the NO_x adsorption-desorption and reduction characteristics of the developed catalyst.

- Proposed a mechanism involving NO_x spillover to explain the enhancement effect of H_2 on NO_x adsorption and NH_3 -SCR.
- In the absence of in-situ characterization data, highlighted the use of reactor-scale data to obtain mechanistic insights

AREAS OF INTEREST

- Heterogeneous catalysis; Chemical reaction engineering
- Expertise: Automotive catalysis (PNA, SCR, LNT); Methane oxidation, Dry reforming of methane, Catalyst development, characterization, and performance evaluation; Transient catalysis

<u>SKILLS</u>

- Experimental skills
 - Development of reactor setup
 - Conducting experiments on fixed-bed and monolith reactors
 - Working on transient catalytic systems
 - Catalyst preparation
 - Catalyst characterization including XRD, TEM, HR-TEM, BET, TPR, TPD, TPSR, and ICP
- Software Programming Basics in MATLAB, Origin, Fiji, ImageJ, XPSPEAK 4.1

PRATEEK KHATRI