Abhishek Dey

Address

Office

EE-227, Department of Electrical Engineering National Institute of Technology Rourkela Rourkela, Odisha-769088, India. EMAIL deyab@nitrkl.ac.in abhidey1988@gmail.com

Research Interests

Home B510, Verghese Kurien Hall, NIT Rourkela. Rourkela, Odisha-769088, India. Skype id: abhidey1988

Control and dynamical systems, system modeling and identification, systems biology, synthetic biology.

WORK EXPERIENCE

Mar 2020 - Present Institute	Assistant Professor National Institute of Technology Rourkela
July 2021 - January 2023 Institute Project title Mentor Summary	Visiting Associate California Institute of Technology Modeling and Implementation of Cell-free Pesticide Remediation System Prof. Richard M. Murray This project investigates a novel method for constructing a cell-free bioremedi- ation system for toxic pesticides. For this, we have developed a model using Python-based toolboxes, and implemented a biomolecular circuit that can sense and remediate organophosphorus pesticides. Overall, the project advances the current understanding of cell-free biosensors and their application in remedia- tion.
Feb 2019 - Dec 2019	Research Associate
Project title	Metabolic Regime Control for Production of Biotherapeutics in E . coli
Institute	Indian Institute of Technology Delhi
Mentor	Prof. James Gomes
Summary	This project aimed to offer an approach for optimization and control of biopro- cesses in the context of productivity and reproducibility. Rather than just relying on broader variables such as cell mass, substrate, and product, the proposed ap- proach utilised information on metabolic pathway intermediate concentrations which more accurately depict the variability of the metabolic regime during the course of a bioprocess.
Jul 2013-May 2019	PhD Scholar
THESIS TITLE	Modeling and Identification of Biomolecular Systems
INSTITUTE	Indian Institute of Technology Delhi
ADVISOR	Prof. Shaunak Sen
Summary	Modeling and identification are integral in understanding any natural system and in designing new ones. In case of biomolecular systems, challenges arise due to their nonlinear, complex, and stochastic nature. Given these challenges, the general problems of estimating parameters from noisy measurements and obtaining approximate models in biomolecular systems are relatively unclear. The thesis combined theoretical, computational and experimental approaches to develop useful linear approximate models from nonlinear and complex ones in biology, used models to predict response to dynamic variations, and estimated

model parameters from noisy data using an improved Kalman filter algorithm for such systems. Overall, the modeling and identification problems addressed in this thesis will aid in the analysis and design of biomolecular networks.

Jul 2010-Apr 2011Management TraineeORGANIZATIONCalcutta Electric Supply Corporation Ltd.

EDUCATION

December 2019	Ph.D. Indian Institute of Technology Delhi CGPA: 9.25
July 2013	Master of Technology in Control Systems Engineering Indian Institute of Technology Kharagpur CGPA: 8.53
May 2010	Bachelor of Engineering in Electrical Engineering Indian Institute of Engineering Science and Technology, Shibpur PERCENTAGE: 72.13%
April 2006	Higher Secondary Examination Jalpaiguri Zilla School PERCENTAGE: 86.2%
April 2004	Secondary Examination Jalpaiguri Zilla School PERCENTAGE: 86.38%

PUBLICATIONS

Journals

A. Dey, V. Bokka and S. Sen (2020). Dependence of a bacterial growth rate on temperature changes. IET Systems Biology, 14(2), 68-74.

A. Dey and S. Sen (2018). Describing function-based approximations of biomolecular systems. IET Systems Biology, 12(3), 93-100.

V. Bokka, A. Dey and S. Sen (2018). Period-amplitude co-variation in biomolecular oscillators. IET Systems Biology, 12(4), 190-198.

Conferences

A. Dey, K. Chakrabarti, K. K. Gola and S. Sen (2019). A Kalman Filter Approach for Biomolecular Systems with Noise Covariance Updating. In 6th Indian Control Conference (ICC), Hyderabad, India, (pp. 262-267)

R. Relan, A. Dey and S. Sen (2019). The best linear approximation of biomolecular systems. In 5th Indian Control Conference (ICC), New Delhi, India, (pp. 51-56).

A. Agarwal, A. Dey, R. Relan and S. Sen (2018). Nonparametric analysis of nonlinear distortions for biomolecular systems. In 5th IFAC conference on Advances in Control and Optimization of Dynamical Systems (ACODS), Hyderabad, India, IFAC-PapersOnLine, 51(1), (pp. 313-318).

A. Dey and S. Sen (2015). Describing function-based approximations of biomolecular signalling systems. In 14th European Control Conference (ECC), Linz, Austria, (pp. 2292-2297).

A. Dey, S. Chakraborty and S. K. Das (2013). Stabilization of a cart-inverted pendulum system using a 2-periodic controller: simulation results. In 1st IEEE Conference on Systems, Process and Control (ICSPC), Kualalampur, Malayasia, (pp. 169-174).

Awards and Scholarships

2020 USIEF	Fulbright-Nehru Postdoctoral Fellowship To pursue postdoctoral research at Caltech, CA, USA.
2015 Linz, Austria	Received Overseas Travel Grant from IIT Delhi for presenting in the 14th European Control Conference (ECC15)
	PhD research scholarship from Ministry of Human Resource Development
	Teaching assistant scholarship in M.Tech. from Ministry of Human Resource Development
2011	All India GATE Rank 344 in Electrical Engineering
2006	WBJEE Rank 838

in Engineering

TEACHING AND MENTORING EXPERIENCE

2022	Co-mentored a Caltech sophomore student
Co-Mentor	in summer undergraduate research fellowship (SURF) project of
Caltech	Feedback Control System in Synthetic Cells
2020-Present	Estimation of Signals and Systems EE6333
Instructor	Basic Electrical Engineering EE1000
NIT Rourkela	Optimal Control EE6302
2014-16	Stochastic Filtering and Identification ELL705
Teaching Assistant	Introduction to Electrical Engineering course ELL100
IIT Delhi	Introduction to Electrical Engineering lab ELL100
2012-13	Signal and Networks EE21101
Teaching Assistant	Undergraduate Control laboratory EE39009
IIT Kharagpur	Postgraduate Control laboratory EE69022

Organizing Activities

2019 IIT Delhi	Student Volunteer in the 5th Indian Control Conference.
	Student Volunteer in the International Workshop on Autonomous Vehicles and Mobile Robotics.

OTHER INFORMATION

2022	Attended Build-a-Cell Workshop 8 at Caltech, and was part of the <i>In silico</i> modeling sub-group.
2020 - 2021	Professor in charge - Departmental library, Control and Robotics Lab, Department of Electrical Engineering, NIT Rourkela.
2019 - present	Reviewer of IET Control Theory and Applications, IET Systems Bi- ology, IET Signal Processing, IFAC World Congress.
2020 - present	Regular member of IEEE, IEEE Control System Society, and IEEE Circuits and Systems Society
2017-2020	Student member of IEEE and IEEE Control System Society
2016	Attended International Biological Engineering Meeting, IbEM 1.0 dur- ing 26-28 March 2016, organized by Jawaharlal Nehru University.
2014	Attended 3rd Winter School on Control and Optimization during 13- 17 January 2014, organized by SYSCON, Indian Institute of Technol-

Computer Skills

 $\overline{\mathrm{Matlab},\,\mathrm{Python},\,\mathrm{IAT}_{E}\!\mathrm{X}}$

LANGUAGES

BENGALI, NATIVE Reading, Speaking, Writing ENGLISH, FLUENT Reading, Speaking, Writing HINDI, FLUENT Reading, Speaking

INTERESTS AND ACTIVITIES

Computer Programming, Yoga, Trekking, Photography

ogy Bombay.

Community Services

- Volunteered and donated blood in NSS IIT Delhi activities.
- Informally associated with NSS IIT Delhi students to help stray dogs in campus.