Monomeric and Dimeric Oxidomolybdenum(V and VI) Complexes, Cytotoxicity, and DNA Interaction Studies: Molybdenum Assisted C=N Bond Cleavage of Salophen Ligands

Rupam Dinda^{*}, S. Majumder, S. Pasayat, S. P. Dash, S. Roy, Department of Chemistry, NIT Rourkela

Four novel dimeric bis- μ -imido bridged metal-metal bonded oxidomolybdenum(V) complexes [Mo^V ₂O₂L'₂¹⁻⁴] (1–4) (where L' ^{1–4} are rearranged ligands formed in situ from H_2L^{1-4}) and a new mononuclear dioxidomolybdenum(VI) complex [Mo^{VI}O₂L⁵] (5) synthesized from salen type N₂O₂ ligands are reported. This rare series of imido-bridged complexes (1-4) have been furnished from rearranged $H_3L'^{1-4}$ ligands, containing an aromatic diimine (o-phenylenediamine) "linker", where Mo assisted hydrolysis followed by – C=N bond cleavage of one of the arms of the ligand H_2L^{1-4} took place. A monomeric molybdenum(V) intermediate species [Mo^VO- (HL'¹⁻⁴)(OEt)] (Id ¹⁻⁴) was generated in situ. The concomitant deprotonation and dimerization of two molybdenum(V) intermediate species (Id $^{1-4}$) ultimately resulted in the formation of a bis- μ -imido bridge between the two molybdenum centers of $[Mo^{V}_{2}O_{2}L'_{2}]^{1-4}$ (1-4). The mechanism of formation of 1-4 has been discussed, and one of the rare intermediate monomeric molybdenum(V) species Id⁴ has been isolated in the solid state and characterized. The monomeric dioxidomolybdenum(VI) complex $[Mo^{VI}O_2L^5]$ (5) was prepared from the ligand H_2L^5 where the aromatic "linker" was replaced by an aliphatic diimine (1,2-diaminopropane). All the ligands and complexes have been characterized by elemental analysis, IR, UV-vis spectroscopy, NMR, ESI-MS, and cyclic voltammetry, and the structural features of 1, 2, 4, and 5 have been solved by X-ray crystallography. The DNA binding and cleavage activity of 1-5 have been explored. The complexes interact with CT-DNA by the groove binding mode, and the binding constants range between 10³ and 10⁴ M⁻¹. Fairly good photoinduced cleavage of pUC19 supercoiled plasmid DNA was exhibited by all the complexes, with 4 showing the most promising photoinduced DNA cleavage activity of ~93%. Moreover, in vitro cytotoxic activity of all the complexes was evaluated by MTT assay, which reveals that the complexes induce cell death in MCF-7 (human breast adenocarcinoma) and HCT-15 (colon cancer) cell lines. (More in Inorganic Chemistry 2017, 56, 11190. DOI: 10.1021/acs.inorgchem.7b01578)